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OPTIMAL PATHS OF CAPITAL ACCUMULATION UNDER THE
MINIMUM TIME OBJECTIVE*
by

Mordecai Xurz

Introduction

The important question of investment criteria and optimal styategy
of development has been discussed by various authors from many different
points of wview. In principle, a distinction can be made between
"competitive" growth paths and "non-competitive" paths. In "competitive"
paths we mean the growth path which is determined by a model in which
decentralized structure of production and consumption is postulated;
producers' expectation functions and profit maximization leading to
demand function for capital is explicitly introduced; and consumers!
preferences leading to a savingsfunction completes the model.

Once we depart from the deterministic competitive model, it becomes
very unclear how much the economist can say about social development
goals. If we allow the preference function of some planning board to
determine the optimal development strategy, we are, in fact, intro-
ducing political and military considerations, national pride, past
experience of the nation and other sociological factors that mold the
objectives of the nation.

It is quite clear that the setting of objective functions for long-

range economic development will always be a disputable question and the

This work was supported in part by Office of Naval Research Contract
Nonr~225(50) at Stanford University. Reproduction in whole or in part
is permitted for any purpose of the United States Goverrnment. The author
is indebted to Professor K. J. Arrow for his valuable comments.



only hope a writer has is to be able to give reasonable Jjustification
for any choice of an objective function.

The present work is, in a certain sense (to be explained in the
last section), a continuation of Srinivasan's work [12] within the
context of a two sector type economy discussed by Drandakis [5],

Kurz [4], Meade [5], Srinivasan [13], Uzawa [15] and others. The model
represents a closed economy in which foreign trade, government fiscal
policy and technological change are excluded. The inclusion of foreign
trade and technological changes are natural extensions of this work,
while government policy is implicitly assumed in the statement of the
objectives of the economy.

In Section (A) we discuss the general nature of our objective
function. In Section (B) the model is presented and the problem is
explicitly stated. Section (C) contains the main body of analysis

while Section (D) is devoted to a comment.

(A) Social Goals

The recent discussions regarding social goals have pointed out two
main differences betweeﬁ preferences of individuals and society as a
whole. These are: (1) Society, contrary to the individual, has an
infinite horizon. (2) Society should not discriminate among gener-
ations; hence, it should not have a discount factor. These require-
ments have caused substantial logical difficulties indicated in [1],
[14], and others.

In trying to accommodate requirements (1) and (2) above, let us
consider the following point of view. It stands to reason that society

should seek the highest technologically feasible level of consumption
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per capita for its citizens. The need not to discriminate among
generations imposes a restriction upon such a goal. This restricbion
is that the maximum level to be obtained should be a sustainable level.
A sustainable rate of consumption per capita is a rate that the econony
can attain and maintain forever with the appropriate investment policy.
Social goals may, therefore, be defined in terms of such sustainable
rates of consumption per capita. From the point of view of consumption
theory, our suggested point of view is some kind of “permanent income
hypothesis” for society as a whole. The nature of the maximum sus-

tainable rate, called the maximum terminal path level, was discussed

recently in [2], [6]1, [7], [8], [9], [11].

In a certain sense, the attainment of such maximal terminal path
level for consumption per capita may be regarded as reaching "economic
maturity" for an underdeveloped economy. Hence, i1f we impose upon our
underdeveloped economy the goal of reaching this maximal terminal path,
there arise two natural questions: (1) Since attainment of this von
Neumann path takes time, how does society feel about the transition
period and the level of consumption during this period? (2) Once a
society is on the path, a certain intrageneration agreement should
exist to maintain the optimal investment policy forever.;/

Question (l) above is the serious one and we shall devote some
thoughts to it below. If one reads, however, the vast economic~
political literature concerning the problems of development, one can
notice that everywhere politicians and economists state their goal as
temporary restriction of consumption (politically feasible) so as "to

reach economic maturity as soon as possible." The theoretical



implications of such social goals can be stated as follows: Given
certain institutional restrictions on consumption, try to reach the
maximum terminal path in minimum time. In "reaching" the path we mean
that the composition of the capital stocks and labor should be such
that when we reach the path we stay on it indefinitely. Obviously
many arguments can be raised against such social goal function. It
assigns no benefits to periods in which consumption per capita is tem-
borarily above the maximum terminal path level; or negative benefits
to periods in which we are below this path. However, it seems inter-
esting enough to investigate the implications of such an objective and
study the structure of the optimal strategy. On the basis of the
results obtained from the pure minimum time problem, we shall be able
to evaluate some general principles of development strategy and suggest

natural extension of our approach.

(B) The Model

In the analysis that follows, we shall work with a two-sector
economy. The first sector uses capital and labor, and produces capital
goods; the second sector produces consumer goods and uses capital and

labor. More specifically, let

Kl be capital goods employed in the capital goods sector

Ll be labor employed in the capital goods sector

K2 be capital employed in the consumer goods sector

L2 be labor employed in the consumer goods sector

Then the production functions are

(1) 9 = Fi(Ki,Li) , i=1,2,
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and we shall assume

(1a) Fi are homogeneous of first degree and concave; hence,

X
—_ __1_ i TR
Fi(Ki,Li) = Lifi(Li) , £,>0, £1<0, i=1,2.
£.(0) =0, f£1(0)=w
(lb) 1 1
£,(w) =@, fi(e) =0,

(2) As for capital goods, we shall assume that capital goods are not
"shiftable" after they have been placed in either sector. In
other words, new capital goods can be invested in either sector
but after being installed they cannot be moved from one sector to
the other. We retain the assumption that capital-labor substitution
prevails within each sector, but only labor can move freely from
one sector to the other. Our basic differential equation system
is formulated as follows:

Iet L be total labor supply,

X
1
(2&) kl =17
X
= o2
(2b) k2 - L 2

and we shall assume

t
(3) L=e " so that the labor force grows at a constant rate. Capital

goods depreciate at a constant proportional rate p.
Since

Kl + uKl "is total gross investment in the capital goods sector,



and

K, + uk

5 5 is total gross investment in the consumer goods sector,
then
= + + +
(3a) Foo= (K + oK) (K, + uK,)
Let
Kl + pk
(5b) g — = u
1
and
L
L_
(3c) ==V
Then, from the definition of kl and k2, we have
K .
-1y _L
e h-th
1
. K
_ 2 L
ke‘K2 ko~ gk -

Then, using (3%a) and the notation of (3b) and (3c), we obtain

(ha) k, = uv fl(

<}

) - (g + n)k;
(%) _
(bb) k

It

ky
(1 - wv £,(53) - (n+ 0k,

The system (4) is the fundamental system of differential equations. If
we start with some initial kl(O) and k2(0), and then choose arbi-
trary u(t), v(t), the system (4) can be solved for the implied paths
of kl(t) and kg(t), Note that wu(t), being the proportion of new
investments placed in the capital goods sector is a variable that can

vary between O and 1 and, hence, if u = O, all new capital goods are

invested in the consumer goods sector, while if u = 1, all new capital

(6N
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goods are invested in the capital goods sector. Similarly, if v = O,
then all labor is employed in the consumer goods sector, and if v = 1,

all labor is employed in the capital goods sector. We may also note
k

that v = O and the concavity of f, dimply that lim vfl(;;) > 0.
v =0
kl
Ir Vfl(?f) v=o=O’ then, by convention, we set u = 0. Hence, we
shall assume
kl
>0 if —=
u>0 if vf (Z)| >0
(5) v=0=> K
- : i =
u=0 if vfl( V) v=0 0 .

Having the free choice of the composition of new investments (u)
and the composition of the labor force (v), our economic problem
starts. An objective function is given to us. Iet us denote our
objective function W, which is W = W(t,kl,kg,u,v), and our problem

is to maximize

T
(6) D =f wit, ks Ky u, v)dt ,
[¢]

subject to the system (4) and 0 <u <1, 0<v <1l. In other words,
we want to choose u*(t) and v*(%) such that if we solve (4) and
insert in (6), the resulting D¥ dis maximized.

As we suggested in Section (A) above, our objective will be to
minimize the time to economic maturity. In this case, W =1 and
D = T; hence, we want to minimize T, the time needed to reach the

maximum sustainable level of terminal path consumption per capita.

(B.1) The Characterization of the Maximum Terminal Path

We shall present now the precise definition of the maximal

7



terminal path level. This subject has been discussed in the literature;

L
hence, we shall state without proof the following: Let v = Ei' Then
the maximum terminal path value of consumption per capita is determined
T
by ki, kg, and VT. These are defined by the following conditions:
T t
T ka f2
(68.) v = TE’—
1 -v 2
(ép) (n+w) =£]
T T
fl kl f2 k2
(6e) 7T T ED T
B 2 1-v
ki kg
= f — = —_—T ] 1 t
where fl Il i f2 f2 T and so are the derivatives fl and
v 1-v| )
£). By virtue of (1.a) and (1.b), it is true that O < v <1 and
T T . T.T
k] >0, ky > 0. In the plane (kl’kg)’ the point (kljkz) has

certain properties that are important. These will be proved now.

Theorem 1: Let (kf,kg) be the maximal terminal path values of k,
and kg, then
T
(1) = < fl(kl)
2 nHu
£ (k7)
(2) k. < 1 L
2 nty

Proof: Insert (6.a), (6.b) into (6.c) to obtain

T

v f
1 ‘
T T
S = + 3
Nl )

T
!
T
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Since kf > 0, kg > 0 we clearly have

T
o (¥
v fl ‘.L
i G AL
1 n+u
but since 0O < vT < 1 and by concavity of f
T
S D
fl(kl) > v\ ~F|, hence,
v m,
7 £,00)
1 nHl
a3
T £, (k)
2 nHl

In diagrammatic form, we have:

lJ

it follows that

Diagram 1

17 n4p



In most of this paper we shall work in the (k kg) plane rather

lJ
than in the two separate (kl,t), (ke,t) planes.
Now, given kl(O), k2(0)J and the targets kf, kg; our minimum

s\

time problem is: choose u*(t) and v*(t) in such a way that the

implied solutions kf(t), kg(t) (implied by the differential equation

(4) above) will have the following properties: (1) ki(O) = kl(O),

15(0) = k,(0); (2) WH(T) = i,

among all Teasible T's that satisfy (1) and (2).

m
KE(T) = k;; (3) T will be the minimum

This form of our problem allows us to utilize the powerful
Pontryagin Maximum Principle [10], which will be the basic mathematical

tool in what follows.

(C) The Solution of the Minimum Time Problem

As the problem was formulated, the Pontryagin Principle can be
applied for the minimum time problem. The conditions of the theorem
can be stated as follows:

Iet

kl kl
(1) B =¥ (ue)v(s) £,(2) - (owdiy) + v, ((1-ule))vle) £, (5)-(ntu)k,).

Then, if u*(t) and v*(t) are the optimal policies, there exist

continuous functions wl(t) and ¢2(t): not both identical to O,

such that

(8a) fﬂ%éfz = ~[u*(t) fi(gi) = ()] ¥ (£) - [(1-u¥)es ;%)J v (t)
(8b) Mgit)- = ()Y,

and

10
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(I) for all %, 0<t<T, the function H(Wl,wg,kl,ke,u,v)
as a function of u and v attains its maximum at v¥
and u¥,

(I1) Sup H(wl,we,kl,kg,u,v) >0 forall 0<t<T.
u,v

(Sup H(wi,wo,kl,kg,u,v) is a constantn)g/
u,v -

Our investigation has to start with the time functions Wl(t)
and We(t). Solving the differential equations (8a,8b) we see that

there are two possible solutions for arbitrary v(t) and u(t):

PPrugs (L) () Jar
¥ (t) - Be o 1 v
, 1 ,
(a)
v (t) =0,
t T
-[ glT)a: t (z)a k
\Ifl(t) _. /g 7) T[-j efog z) er(nw)T[(j~u)fi(_\/:1_)]dT . C] ’
(b) °
Wg(t) = Ae(n-m)t s

where A, B, C are constants, g(T) = u(w)fi(i}) - (n+u) and kl(T)
is the corresponding solution to (4a,kb).

The Pontryagin theorem gives us essentially a set of consistency
conditions. To prove that in fact some u*, v¥ are optimal, we have
to find Wl(t) and wz(t) continuous such that the consistency con-
ditions are met. It is obvious from the start that the initial con-
ditions are crucial. For different initial conditions, we can expect
different optimal policies. The initial conditions will determine
both the signs and the sizes of A, B, and C, and also the corres-

ponding optimal policies, v¥* and u¥.

11



Note, however, that whenever solution type (b) holds with ¥y £ 0,
¥, £ 0, ¥y £ Y5, then the optimal policy will take the form v* =0
or v¥=1, u¥=0, or u¥=1. Only when ¥, 20 or ¥,=0 (not
both) is it possible to have different solutions than these two.é/

The complexity of the problem arises from the fact that wl and,
¥, as solutions of (8a) and (8b) depend upon ¥ and u¥, while in
evaluating H(t) and the optimal policy, they determine u* and v¥.

The economic meaning of this search for a consistent set of con-
ditions is the old search for a set of (shadow) prices, such that
behavior under them follows some optimal properties.

In presenting our solutions we shall present in the following
section a diagram and description of the optimal policy. In Section

C.2, a rigorous proof will be given.

(C.1) Description of the Optimal Strategy

In the plane (k kg) there are three distinct regions denoted

17
retion I, II, and IITI. These three regions are determined by three
curves which are, in turn, defined in terms of the three "extreme
policies." Iet us define these first.

(a) The u* =1, v¥ =1 policy is the policy according to
which all labor is employed in the capital goods sector (v* = 1),
and all new capital goods are reinvested in the capital goods sector.

(b) The u* =0, v* =1 policy is the policy according to
which all labor is employed in the capital goods sector (v¥* = 1)

but all new capital goods are invested in the consumer goods sector

(u* = 0).

12
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(¢) The u* = O, v* = 0 policy is the policy according to
which all labor is employed in the consumer goods sector and no new
capital goods are built.

The three curves that define regions I, II, and III are the
following (see Diagram 2):

(a) The curve DG has the property that it is the collection of
all (kl(O),kE(O)) such that if the v¥ = 1, u¥ = 1 policy is

1
followed, the path will pass through the point (ki,kg). As for all

v¥ = 1, u¥ =1 policies, the corrdinates tend as follows: k.{x) = O

° 2
and k. (o) = % vhere %. = EEEELZ.

1 1 1 nty

(b) The curve EF is the collection of all (kl(O),kg(O)) such
that if the v* = 1, u¥ = 0 policy is followed, (kl(t),kg(t)) will
pass through ( g,kg) but ultimately will turn around, and
k,(0) = % (w) = 0.

1

{c) The curve EH is the collection of all (kl(O),kg(O)) such

k
that k. (0) = (_2 k (O), (x,(0) > kT) and hence if the u¥ = 0 = v¥

2 T 1 1
kl
policy is followed, (kl(t),k2(t)) is bound to pass through (ki,kg),

Region I is defined by all points (k. (0),k.(0)) +to the left of
the combined curve DEF.

Region II is defined by all points (k (o),kg(o)) to the right
of DE but above EH.

Region III is defined by all points to the right of EF but

below EH,

13



(I1)

(1, (0) ,,(0))

K (0)

Diagram 2

Optimal Policy for Points in Region I.

It is proved in C.2 below that the optimal policy for (kl(O),kg(O))
in region I is as follows: follow the u¥ =1 = v¥ policy for some
time period (0,t**) so that k, is falling and k, is rising until
you reach the curve EF. At that moment the policy is changed to

u® = 0 v* =1 and k, is falling while Xk, is rising until you

1 2
T T
reach (kl’kz)'

1k
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This strategy of development requires for the initial stage, to
build only capital goods and to reinvest them in the machine building
industries. ILater on as a critical moment is reached, no more capital
goods are being invested in the machine building sector and all new
capital goods are invested in consumer goods industries. Note that at
the "switching" point the capital goods industries have more capital
than needed for the optimum terminal path value of kf, but during
the next period of transition a certain portion of it is being
depreciated.

Tt is interesting to note that region I does not contain "poor"
countries in the conventional sense only. It contains also economies
which start off with basically unbalanced capital stock: If an economy
has too much (relative to the optimal terminal path) capital in the
consumer goods industries and too little capital in the capital goods
industries, it still follows the basic policy of first "tipping the
balance" in favor of the capital goods sectors and only then approaching
the goal of the maximum terminal path level.

In our analysis so far we have not imposed a "floor" on consumption

per capita. Consequently, the total "food" production during the

k (t)
. . . 2 . .
transitional period is equal to lim (1-v)f ( . This obviously
2A1-v)
v 51 1-v

is unrealistic strategy. The analysis does, however, suggest the basic
policy. In imposing floors, we obtain the following results: (a) If

we require a certain proportion of the labor force to be employed

during the period of transition in the consumer goods sector, then our
above analysis remains completely unchanged except tha®t the minimum

time is increased. (b) If we require minimum consumption per capita

15



during the period of transition, then our analysis remains unchanged
except for a special region of the <k1’k2) diagram which constitutes
a trap from which the economy cannot get out and, in fact, except for

a special set of conditions the economy will decay completely.

Optimal Policy in Region II.

If the economy starts off in region II, it is capable of going

directly from (kl(O),kg(O)) +0 (kT T).,

1055 During the transitional

period u¥ =1 so that all new capital goods are invested in the
capital goods sector and, hence, the capital goods in the consumer goods
sector simply depreciate., It is interesting, however, to note that
kl(t) does not have to rise; in fact, it will decline in most cases
since the total output of new capital goods does not have to be large

so that kl(t) may grow at a rate smaller than n, the rate of growth
of population. It is shown below that there is a unique constant v¥

such that the economy will move from (kl(O),ke(O)) to (kI, g).
Along the lines HE and DE the extreme policies will be followed.

Along EH: v¥ = 0 and along DE: v* = 1.

Optimal Policy in Region III.

In this region the opposite of II occurs. Here u* = 0, capital
in the capital goods sector is allowed to depreciate while the capital
stock in the consumer goods sector absorbs all of the newly built
capital goodé. The amount of new capital goods to be built is deter-
mined by Vv¥ which is a unique constant depending upon the initial
conditions. Along EH: +v¥ = O and along FE: v* = 1, Nobe here

again that k2 may rise or fall during the transitional period

16
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depending upon whether the rate at which new capital goods are added
exceeds or falls short of the rate of growth of population and the rate

of depreciation in the consumer goods sector.

(C.2) Rigorous Study of the Optimal Policies

In order to prove the optimality of the policies described in

C.1, we have to study first the three "extreme" policies u¥ = v¥ =]

C.2,1 The u*¥ =0 v¥ =1 Policy.

Under this policy

= ~{n+y1)
kl (n u)kl
(10)
= - +
Ky fl(kl) (n wk,
hence,
lim k. {t) =0 lim k. (t) =0
1 2
t o t > w
11
(11) 3 L2 (x)
kg(t) SO A ky T

Solving (10) we obtain

~( %

k (t) = k (0)e ni)
(12) N ‘

k2(t) = e-(n+u)t[JC e(n+p)T fl(kl(O)e-(n+“)T)dT + kg(O)]

£, (i, (0)) : :

for kE(O) >mn+u , we have kg(’c) <0 kl(t) <0 and
lim k. (t) = 1lim Xk (t) = 0,
t :mw 2 t :mm 1

Now insert kl(t) into kz(t) in (12) and change variables to

obtain

17



kx_(0)

k 1 £ (x) k. (0)
(13) K = I~ ax + k&, —2
2 ot 2 1% (0) ’
kl X 1
hence, in the (kl’kg) plane k, = g(kl,kl(o);kg(o)). If we select
ke(O) = 0, we have a family k, = g(kl,kl(O)) which depends upon

dk
. ‘ . N 2
k. (0) alone. It is clear that for kg(O) =0 d£1(67 >0 and

1
k) o0 fl(x)

sup gk ,k (0)) = =— ax.

1771 n+y 2
kl(O) kX

= - (k)
Lemma 1: ILet (kl’kg) be arbitrary values with k, < " Iet
—_ T
k, = g(kl,kl(O)) for some kl(O)° Then

(1) g(kl,kl(O)) is concave in k. (for fixed kl(O))°

1

(0) (for fixed k._).

(2) g(kl,kl(O)) is concave in k 1

1

(3) There exists a unique kl(O) and t such that
£ X = ) = k. .
g(kl( )s kl(O)) K, kl(t) k)

Proof: (1) and (2) follow by direct differentiation of (13).

Let z(kl,kl(O)) e —z— dx
k
1
(1) z(k,,k.) = 0 % __ o, k, <k (0) <o .
1’7 aklioi 1—-"1 -
We want to prove that there exists a unique El(O) such that
Z(kl’kl(o)) = ks ~
fl(x) fl(kl) _
Note that > all x >k hence
2 2 17
X X
0 £ (x) o £ (k. ) £ (k)
[ 1 s A R A
K ox X K
1 1 1

18
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hence

X © f £k
2 (%, o) = = l(X)dx> )
1’ nH |- 2 n+l
k b's
_ 1
£k ) _
- fon ——te > 0, i :
Since by assumption o k2 > 0, it follows
(1ha) Z(El,m) > EQ .
By (14) and (1ka) it follows that there exists a unique El(O) such
that El < El(O) <o and
z.(kl,kl(o)) =k,
or: _
o ii J[ 1(0) fl(x) _
g(kl,kl(o)) alon s dx =k, .
kl b's

- - = ~(ntu)t
t is determined trivially from k, = kQ(O)e (n “>t.

Lemma 1 proves then that as far as the u¥ = 0 v¥ = 1 policy

is concerned, by studying all k.(t) solutions with ke(O) =0 we

£, (x, (0))
. ) ) o o
are in fact studying all kg(t) with k2( ) < y

2

Corollary: There exists a unique concave (in kl) gT(kl,kg(O)) such

that

T
(x

T T, T T T
ky = g (k,%(0)) and 14
£ (kT)

Proof: Since by Theorem 1 kT < 1 1
—_— 2 N+

s lemme, 1 is applicable.

From Theorem 1, Lemma 1 and the Corollary, it follows that for

£, (x, (0))
uw¥ = 0v¥=1 and all k2(0) < BT the following diagram
(Diagram 3) describes the behavior of (kl(t),ke(t))o For simplicity
of notation, we shall write gT(kl) instead of gT(kl,kg(O)),

19
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]
T r (k)
k= 17
2 n+y
& > -k
1
k{(o) Lo fl<kl)
1~ ntd
Diagram 3
C.2.2 The u* =v¥*¥ =1 Policy.
Under this policy
k, = -(n+u)k
(15) 2 2
= - +i
K fl(kl) (ot )k,
Here again we can solwve (15) and transform it to the (kl’kz) plane to
obtain a whole family of curves k2 = h(kl,kl(o))-

Under

......

dk
2

=% >0

ak,

(a)

if

u¥ - v¥ —~ 1 policy we have
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P

e+

dk Fo(k,)

N 2 ,
(b) &, <0 if k)

(¢) Lim ky(t) = 0
t — t -

(a) n(x.,k (0)) is conve

AN
lim k. (%) = % where

L1

n

1 1

o0

x in k

1771 1°
Proof: From (15) we have
Tp_ M
dk; f (kij
1 -
il s
and
2 )
4%k, i kefl(kl, .
dk £ (k)
(ntp)[k, - 2—20)°
1 ntu

and (a) (b) and (&) follow. (c) is s

Corollary 1: For a fixed kl(O) 1
kl

Corollary 2: There exists a unique c

T

T, T
h (kl) = k.

een directly from (15)0

im h(k ,k (0)) = o,
.eo 'L

T
onvex h (k.) such that

1

In diagrammatic terms, the family of all h(kl’kl(o)) curves is

described as follows:
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B

2
T
h (kl)
T T
= Ll
kt{ o fl(k.l) 1
1 nte
Diagram 4

with the arrows indicating the direction of movement.

The crucial question becomes now: What is the relation between
the curve hT(kl) under the u¥ = v¥ = 1 policy'and- gT(kl) under
the u*¥ = 0 v*¥ =1 policy.

e (k

A . 4 1 l)
Theorem 2: Iet k. be the solution of k. =
s 1 1 n+u

. A T
<k <k it is true that g (kl) <h

. Then over the
T
(

3

k).

interval k 1

1

M (0} < k
Moreover k, ) 10
. T | . T
Proof: Since by Lemma 1 and Lemma 2 g is concave in kl and h
)
is convex in k, and since at ki, hT(kz) = gm(ki) with
an’| g’
810 <0 £80 <0 it follows that in order to prove the theorem
dkl dkl
le le
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-

jp—
Epaniong

H

[ Qi [Qaaierl

it suffices to prove that

Z =

dgT( k

1)

an~(k

dk

1

T
kl

From Lemms 1 and Lemma 2 we know, however, that

By Theorem 1 k

LT T
KL - L) K £ (kT)[fl(kln)— - (L + kT)J
_ 2 nty 2 11 nHl 2 1
- T T, ~ T
kl kT _ fl(kl) () kT _ fl(kl)
1 ntu B 1 ny
R
- — . > T
1 ) < 0, By the same Theorem 1
T
1 2 n+y

T A
which proves that =z < 0. The result that kl(O) <k

Theorem 3: For any kl such that k

Proof:

Hence

Tet

£k, ) - (r+p)(x

1

z = £(k)) - (nﬁl)(kl + g

1

T i
) Sk <x(0)

+ gT(kl)) > 0.

<k

1

is trivial.

T(kl)), We know that
T
N
— ax
nHu e 2 )
1 X
K2 (0)
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£k, ) £(k,)
By X (p) - —3 (k- 1(0))
k 2 1 1
1 1 k
(x.) ’
flk
= ...(r+|_1) + -——% kT(
1
k.
1
£k, ) T
> (pH) + (since Xk, <k (0))
z kl 1 -1
>0 i < @
since kl 7

Hence z > 0.

Theorem k: Iet k, = h(kl,kl(o)) be an arbitrary (v¥ = 1 = u* policy)

function with h(kl(O),kl(O)) < hT(kl(O)). Then there exists
T, .
] ; *R KK *¥ = F%
a unique pair (kl 2% ) such that h(kl ,kl(O)) g (kl ).

Proof: First note that h(kl(O),kl(O)) < hT(kl(O)):>h(kl,kl(O)) < hT(kl)
for all kl' Now form the function
T . T
) h (kl) - h(kl,kl(O)) k) <k
wik,) =
* T ) - n(k 5 (0) ki <k <Kk(0)
A T 1% 5%
Clearly W(k. ) >0 for k, < i
1 1= "1
T T, T 7 T
J — = -
Wk, =% (0)) = g (1«:1(0),1«:1(0)) h(kl(O),kl(O))

T

But gT(kl O),kf(O)) = 0 and h(ki(O),k (0)) > 0 since h(kl’kl(o)) =0

1

for k, = & onl And % > kT(O) Hence W(k = kT(O)) < 0. Hence
17 v 17 R 170 ‘

there exist a k¥* such that W(ki*) = 0, hence h(k?f*,kl( 0)) =

T

g (x¥*), Note, however, Lhat W(kl) is monotone, hence ki* is

[= Y l

20,
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Theorem 5: If (kl(O),k

€.2.3 The u* = v*¥ = 0 Policy.

In this case
k -(nHu )k
(16} A 1,
k, = -(n+u)k2

k,.(0)
- _ 2 . — % = ¥ = . .
Hence k2 = EITET kl is the description of the u v 0 policy in

+ (k_,k.) .
he (kl,k2) plane

k (0)
2 . . . . .
k2 = £1T67 kl are straight lines and obviously there is only one

such line that goes through the point (k?,kg), namely k. = k

2 1

I—’WH l T\)WF—ZI

We have completed the preparation of all the material needed for

the proof of the optimal policy. We tura finally tc this proof.

C.2,4 Proof of the Optimal Policy.

(a) Region I
(0)) ©be arbitrary initial conditions in region 1.

If k,(0) =h . T(kl(o))
T

k] <k (0) < kf(O) the optimel policy will be to follow these curves

Let, (klun,k
T

2
k,(0),%,(0)) (k. (0) < ki) or k

(0) = g
respectively (u* = v* = 1 in the Tirst, and u¥ = O v¥ = 1 in the
second). If (kl(O),kE(O)) is inberior point of region 1, it has the
following features: (1) If the v* =1 u* = O policy is followed
kl(t) and. kE(t) will tend to 0. (2) If u* =0 v*¥ = 0 policy is

followed kl(t) k (%) will tend to 0. (3) If u¥ =1 = v* 1is

2

followed, then there exist (by Theorem 4) a t%% and kf* such that

. 7. \
KK = S
h(kl ,kl(O)) g (kl 7.

2(0)) belong %o region I, the optimal policy

ise
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Proof: (1) Under wu*(t) = v¥(t) =1

b
~f [ fr(ntn)ldr
¥, (t) = pe (BT () =e ° 1 [cl

k (t) = ~(nH)k

. k. = £ (k. ) - (ntu)k

27 "1 1L 1

X%
fo fidr

Choose A >0 and C = Ae Hence

_ r K%
\ye(t) >0 q;l(t) >0 and wl(t) \lfz(t) >0 for 0>+ <%

wl(t**) -y (%) = 0.

(2) Under u*(t) =0 v¥(t) =1 t¥* <t <T,
£
v.(t) = Ae(n+“)t, v () = olBtu)t [A - A L frdx]
2 1 .
and ie(t) = fl(kl) - (n+u)k2 il(t) = -(n+p)kl(t)u Hence:

\lfg(t) >0 urg(t**) = x;rl(t**) wg(t) - wl(t) >0 for t¥*¥ <t <T.

(3) The choice of Wl(t) and We(t) for 0<t<T is

clearly a choice of continuous functions, they are also solutions of

the differential equations (8a-8b).

k

k
(1) 8 =y luve (50 - ()i ) + vl (mw)ve, (57) - (miu)iy]

k

= (ry = vp)luve, (=5) 1= ) Loy (800, (6) + ¥, (6D, (8)]

1

k
oy (e)vE (=)



Hence when *1 >0 12 >0 ¥y > ¥y

Sup H = (wl-wg)[fl(kl)]-(nm)[\lfl
U.,V
Hence

u*

when V¥, >0 but Wg(t) > wl(t)

Sup H = -(n+u)[wl(t)k
u_, v

1
Hence

u*

This establishes the (I) part of

(6)k, (6) 4, (t)k

(t) +

S8, (), (3 )

I}
,_J
i

<
ES

+
=
—
o+
~
et
—
fad
~
—
+
-
—
ot
~
Hh
—
-

the consistency conditions of the

Pontriagin Theorem. We have to prove now that sup H > Q0 for all

v,u
0<t <. ’
(5) Over the interval O <t < t*¥,
t¥E* t
[ ofrdr ~fC[£r-(n+)lar
(17) Heae® L et L, Oy )= (v ey e 0 i ()1,
From (15) we have
. RN gy e
(18) k(1) = k,(0)e () 5
hence,
(18a) kQ(O) = RK¥ e(n+u)t**_;
2
dk

. 1 .
Also, since — = fl<k1) - (n+p)kl,

at

dk

(19) at

_ 1
T £ (k) - (ntu k)
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t**[f'—(n+u)]d7

vl ENCIPRETDI

- Ae(n-m)-t-’(n-m)kg(O)e"(nﬂl)t R

hence,
L%
S [rr-(nvp)Jae
H = e () - (gl B

1 (o) .

- A(n+u)k2

Note now that by (19) (change of variables),

K% ¥
kl

** 1 £y - (o)
(20) [ [fi—(n+u)]d’r= 'f,—lzm dX=log(fl(X)--(n+p)x

k k

1 1

Now, using (18a) to substitute for kg(O), and (20), we obtain

£ (ki*)—n(n+u)k§*

1 (ntp ) p**
~ (o+
£ kl) (n u)kl

H=Ae(n+“)t**[fl(kl)—(n+u)kl] 4 - Aot )kX¥e
1
oxr

B o= e e (o) - (i - (anige]

Noting, however, that kg* = gT(

that H > 0 and a constant.

ki*)’ and using Theorem 3, we conclude

A
L=

(6) Over the interval t** <t <

‘rt
H = e(n+u)t[A - A‘L fidx](~(n+u)kl) + Ae(n+p)t[f (x
¥

+t
=2 () - () (xy + k)T + ae P B JQ flax .

KK

Since k, = gT(kl)j Theorem 3 is again applicable and H > O,
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To check that H is a constant let

t

H - _ _ ’ ‘ '
W = z(t) = fl(kl) (nﬂl)(kl + kg) + (r1+p)1<:_.L l** £1dx
Since k, = —(n+u)kl k, = fl(kl) - (n+p)k2
~t
a{t) = -(n+u)[fl(kl) - (n+|¢)(kl + k) (o )k, L**f‘id}c] ,
hence
2(t) = g(m)e D) (E-T)
hernce
H Ae(n+“)t z(T)e_(n+H)(t—T)
hence
H = az(m)e(mH)T
a constant where
T
T T T T .
z(T) = fl(kl) - (o) (6] + k) + (o)l ft**fldx .
Region IT

Region II is characterized by the following conditions:

Theorem 6: If (kl(O),kg(O)) belong to region II, the optimal policy

is u¥ =1 and v* is to be determined by the initial

conditions. There exists a unigue constant v* such that

T

k (T) = k ke(T) = kg

29



(ntp)t

Proof: Choose wl(t) = 0 WE(t) = Ae A <oO.

k
H = Ae(n+“)t[(l-u)v fl(i%) - (n+u)k, ]

2
and
Sup H = -(n+u)Ae(n+“)t k() with w* =1 .
u,v
Under u¥* =1
N o (et
ky(t) = -(nH)k,
hence
- yo~{ntu)t
kg(t) = kE(O)e
hence
+ - .
Sup H = "A(n+}.l)e (nﬁi)t kE(O)e (l’l"'P-)'G
u,v

i

-A(n+p)k2(0) >0 since A<O .

o (e YT
there exists a T% such that k- = k,(0)e (ntp)T*

. T
Since k2(0) >k 5

2)

All the conditions required by the maximum principle are satisfied
except that we have to show the existence of a v¥*. To do this, notice

that
k

’ 1
= —_) . +
kl v £ ( ) (n p)kl

has a solution k, = m(t,kl(O),v) where v is a constant and m is

continuous. By the definition of region II, however:

I 0 (T) = K-
f v = then k2 =k,
T
but kl(T) <k
If v =1 then k. (T) = KL
) 2
T

but > .
butT kl(T) 2 kl
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S

(1f kz(o)

i

k.(0) then v* = 0 is optimal, if k

1 2

l—'wri! I\DWI—I!

then v¥ = 1 is optimal.) Since m(t,kl(O),v) is continuous, there

must exist & O < v¥ <1 such that kl(T) = m(T,kl(O),v*) = ki.

Region IIT

Region III is characterized by the following conditions:

(0)  %,(0) > & (x,(0))
Theorem 7: If (k,(0),k (0)) belong to region III, the optimal policy
is u* =0 and v¥* is to be determined by the initial

conditions. There exist a unique constant v* such that

The proof is omitted because of its similarity to the proof of

Theorem 6. We may only note that in this case ¢2 =0{A=0)

+
¥y = Be(n bt B < O with the resulting u¥*(t) = O.

(C.3) An Evaluation of the Results

In order to evaluate our results, let us consider again the

entire (k. (0),k (0)) plane and interpret the nature of the initial

1

conditions using the following diagram (see Diagram 5):

2
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T T A 1
k) kl(O) ko
Diagram 5

Regions A and B have a clear cut interpretation. Countries
in region A are "truly" underdeveloped in the sense that they have

both kl and. k2 below the von Neumann target. Countries in region

B are truly "overdeveloped” in the sense that their k, and k, are

both above the target. Economies in any other region can be inter-

preted to be in "unbalanced" state: Only one of the sectors has a

L"l &
| EX

capital labor ratio (note: k, = 1) above the target, while the
other is below the target.

It is quite clear that the criterion of minimum time is not very
meaningful for economies in region B. This is demonstrated mathe-
matically by the indeterminancy of the v policy for this region. In

other words, the truly minimum time solution for economies starting

in region B 1is to throw away capital and thus reduce kl(O) and
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kg(O) to kl1 and kg. We did not allow this since the path has to

1
satisfy the differential equatiohs (4a-4v). But surely, among all the
paths between the initial conditions and (kf,kg) we want to choose

the one that maximizes some utility function of consumption. In this
sense, we would like to stay in region B as long as we can!

Another feature of our solution is important. The unrestricted
minimum time solution for econcmies in regions A requires consumption
per capita to be zero during the transition period. This is part of
the results obtained from the criterion of maximum speed. This result
is not as unrealistic as it may seem since we can always impose floors
on consumption or on the proportion of the labor force employed in the
consumer goods industries. This feature of low consumption per capita
has appeared in many papers (including some in which an explicit
utility function was maximized) and was resolved by imposing such

' This is

artificial floor based on some myth called "subsistence.'
certainly meaningless.

The discussion points out the need for some kind of social
preference function that would lead us to stay in region B (Diagram 5)
as long as we can on the one hand, and prevent consumption from falling
to O in regions type A, on the other. Floors should come as a
consequence of some general principles of choice over time rather than
an arbitrary decision by the investigator. Unfortunately, such pre-
ference functions as the discounted sum of consumption {or consumption
per capita) do not prevent consumption from falling to zero during

the transition; thus, Uzawa [16] had to resort to the artificial con-

sumption floor to remedy the situation.
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The principle of maximum speed analyzed in this paper has the
great merit of exposing the basic features of optimal strategies with
respect to objective functions that regard rapid development as a
desirable result. It also demonstrates the similarity in development
. strategy between economies of entirely different nature. For example,
let us consider Germany in 1945; most of the capital goods industries
were partly destroyed, while the consumer goods industries like
agriculture, were much less damaged. ©Since there was a general reduction
in the labor.force due to the war, Germany may have found itself in

region A The basic features of the German recovery were to build

1
very rapidly the capital goods industries while keeping consumption
restricted by the agreement of the unions to maintain low wages. These
are the main characteristics of the strategy resulting from the maximum
speed principle. It seems to us quite plausible that the same principle
may have guided the Russian strategy of economic development; moreover,
it may be that the principle of maximum speed is the principle that

underlies the development strategy of many underdeveloped countries

today.

(D) A Comment

We have noted in the introduction that we regard this paper as
a continuation of Srinivasan’s work [12]. In his paper, Srinivasan
worked with a two sector model where each sector was represented by
an "activity analysis" model of production. Srinivasan was unable to
obtain a general solution to the minimum time problem. Consequently,

he considered only the class of paths of the type (in our notation)
u¥ =1 v¥ o= L 0 <t < t%¥
u* = 0 vk =1 0<t T



oy

Puse’ [

.

~ i

LA |

[

N [ N N N i

and within this class he chose the one with minimum T (see [12],
pages 81-87). In this way, his problem was only the determination of
%%, Moreover, Srinivasan considered initial conditions in region A
(diagram above) only. In view of these facts, we regard our work as

a generalization of the Srinivasan solution to all feasible paths

starting from any initial conditions.
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FOOTNOTES
This last point was raised in [7] and [8].

The form of the theorem (II) follows from the fact that both (4)
and (8a-8b) have solutions. This is the result of assumptions
(1a) and (1b). Instead of proving this fact, we shall later on

simply obtain the explicit solutions and use them in the analysis.

From (8a-8b) it is clear that ¥ =Y, # 0 over an interval

t <t <t, immediately imply u*(t) = v¥(t) = O over this

o 1

interval.
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